The problem of looking down

So in film, the camera usually moves a lot, together with the actors and props. The scene doesn’t move. In the virtual 3D world, we can move and revolve the world around the camera, which I talked about previously.

Let’s talk about the virtual camera first before launching into the problem I was trying to solve. There are 3 positional vectors for a virtual camera: its position, its “up” vector, and where it’s looking at. The 1st and 3rd positional vector should be easily understood. The “up” vector refers to where the “head” of the camera is pointing at.

You’re looking at something in front of you. Now tilt your head left. Your eyes are still at the same position (1st vector), and you’re still looking at the same thing (3rd vector). But the top of your head is pointing at a different direction (2nd vector). This changes your view. Refer to my article on lights and virtual cameras for more information (and pictures…).

So far, I haven’t used the 2nd vector to do much, so I’ve kept it at the default (0,1,0), which means point to the sky. Now for the problem…

Suppose you’re looking at something in front of you, say an (absolutely symmetrical) apple, and you move up while keeping the apple at the same position. You’re now looking down at it, aren’t you? Say you’re not the fidgety type, so your head is kept straight. Your head’s not pointed directly up to the sky, but it’s straight. You don’t know how, but you know it’s straight. This is important.

Now, slowly move towards the space directly above the apple. Your head is still kept “straight”. As in, if you tilted your head, the view changes substantially, and the apple appears “lopsided”. Here’s the problem (finally!). What happens when you look at the apple directly from above it?

Moving eye position while looking down

You can now tilt your head in any direction, and the apple still looks the same (as in you’re looking directly above it). Now the 2nd positional vector matters, because the view changes substantially (because the scene around the apple changes). The default “up” direction fails.

I can’t remember the name of this problem (or even if there was one). And I can’t find my OpenGL textbook that describes this, so I’m writing this from memory. If you can find me a reference to this, let me know.

So my young naive mind back then was “How about I don’t move the camera at all!” *sigh* So naive… As you can tell, my solution to move the entire world instead of moving the camera failed. It failed as in not solving the original problem I was trying to solve. But it worked flawlessly in that it worked exactly as the camera was made to move through the 3D world.

And I’ll tell you how I built that camera … next time.